À quatorze ans, j'ai lu le problème des trois corps et j'ai été fasciné par sa description des civilisations étrangères. Bien qu'aucun cours d'astronomie n'ait été proposé dans mon collège en Chine, j'ai trouvé SETI@home sur Internet et j'ai regardé avec étonnement mon ordinateur portable calculer, à la recherche de signaux radio extraterrestres. SETI@home connecte de nombreux ordinateurs inactifs via Internet en un seul super-ordinateur pour la recherche. L'article d'aujourd'hui est un test pilote pour un projet similaire de calcul distribué sur MilkyWay@Home.
Ce projet vise à mesurer la quantité de matière noire contenue dans les galaxies naines. L'immense gravité de notre galaxie, la Voie lactée, peut déchirer les galaxies naines et étirer leurs étoiles en de longs et minces flux. À partir de la répartition des étoiles dans les courants actuellement observés, les astronomes peuvent revenir sur les propriétés de la galaxie naine d'origine avant qu'elle ne soit perturbée (voir cet astrobite pour les précédents efforts de modélisation). La matière noire est invisible, sauf à travers sa gravité. Les chercheurs observent donc le mouvement des étoiles et modélisent les effets gravitationnels de la matière noire.
L'algorithme
L'algorithme testé dans le papier actuel modélise les flux stellaires avec une gamme de paramètres de galaxies naines d'entrée et trouve la meilleure adéquation au flux stellaire observé. Ce modèle nécessite les informations spatiales et de vitesse complètes en 6 dimensions du flux, qui sont maintenant disponibles grâce au télescope spatial Gaia. Le programme prend également les paramètres d'entrée de la galaxie naine progénitrice : sa masse baryonique et sa taille, et le rapport entre la masse et la taille de la matière baryonique et de la matière sombre. Un paramètre supplémentaire décrit la durée de la chute de la galaxie naine dans la Voie lactée, et l'orbite du flux observé est rembobinée de ce temps pour retrouver une position initiale. À partir de cette position, la galaxie naine est libérée dans un potentiel fixe de la Voie lactée. Chaque étoile et particule de matière noire de la galaxie naine subit la force gravitationnelle combinée du potentiel de la Voie lactée et de toutes les autres particules. Un intégrateur N-corps calcule la force gravitationnelle et détermine l'orbite de chaque particule.
Le champ de marée de la Voie lactée perturbe la galaxie naine et dépouille certaines des étoiles en un flux le long de son orbite. Le programme compare le flux modélisé aux données d'observation en termes de distribution de densité, de masse et de largeur. Les chercheurs définissent une fonction de vraisemblance basée sur ces comparaisons et font varier les paramètres d'entrée jusqu'à ce que la vraisemblance maximale soit atteinte. Cette approche nécessite 50 000 simulations avant de se fixer sur une valeur optimisée, elle est donc gourmande en calculs. Sur un ordinateur portable typique, une optimisation avec ce programme pourrait prendre des centaines d'années. C'est trop long pour qu'un chercheur attende et les superordinateurs sont très utiles pour ce genre de problèmes.
Informatique distribuée
Le calcul distribué est un moyen de "construire son propre supercalculateur" et d'augmenter énormément la vitesse de calcul si suffisamment de volontaires apportent leur CPU.
L'équipe de recherche dont il est question dans l'article d'aujourd'hui a recruté des centaines de milliers de volontaires comme moi qui exécutent le programme sur leurs ordinateurs inactifs. Avec 800 TeraFLOPS de puissance de calcul cumulée, un calcul qui doit être effectué pendant trois jours sur un ordinateur portable typique peut être effectué en une seconde sur ce réseau. Grâce à cette technologie, ils ont réussi à récupérer le meilleur ajustement au flux observé.
Figure 1. En haut : Positions des particules dans le flux stellaire simulé. En bas : Histogramme de la densité des particules le long du courant. La matière noire et les baryons ont des distributions de densité similaires, tandis que la principale différence est le noyau baryonique à un angle de ~0 le long du flux. Seule la densité des baryons est utilisée pour l'ajustement du modèle. Reproduit de la figure 3 dans le document.
Résultats
Comme premier test, les auteurs ont généré un flux stellaire en connaissant la galaxie naine génératrice, l'orbite du flux et la distribution de la matière noire (voir Fig 1). Ensuite, ils ont observé un faux flux en cachant les informations inobservables sur la matière noire et en conservant l'espace et la vitesse des étoiles en 6 dimensions. Avec uniquement les quantités observables en entrée, l'algorithme d'ajustement a récupéré les paramètres d'entrée, y compris la masse de matière noire.
À l'avenir, les auteurs prévoient d'étendre l'algorithme pour adapter simultanément la galaxie naine à son orbite, un modèle plus physique des progéniteurs de la galaxie naine et les paramètres de la Voie lactée. Ils espèrent que l'ajustement simultané de plusieurs courants de marée contraindra les paramètres de la Voie lactée et inclura les effets des galaxies satellites de la Voie lactée comme le Grand et le Petit Nuage de Magellan.
Cet article montre une nouvelle voie prometteuse pour la modélisation des flux stellaires. Les recherches futures pourraient utiliser cet outil de modélisation pour récupérer la masse de matière noire des galaxies naines et les comparer aux prévisions de la théorie de la matière noire. Non seulement le calcul distribué aide les chercheurs qui n'ont pas pleinement accès à un superordinateur, mais il inspire les passionnés de science à devenir de futurs scientifiques comme il m'a inspiré.
Article original : https://astrobites.org/2021/03/04/milkywayathome/